Ignore:
Timestamp:
06/16/2020 11:56:28 AM (4 years ago)
Author:
Bruce Dubbs <bdubbs@…>
Branches:
10.0, 10.0-rc1, 10.1, 10.1-rc1, 11.0, 11.0-rc1, 11.0-rc2, 11.0-rc3, 11.1, 11.1-rc1, 11.2, 11.2-rc1, 11.3, 11.3-rc1, 12.0, 12.0-rc1, 12.1, 12.1-rc1, arm, bdubbs/gcc13, ml-11.0, multilib, renodr/libudev-from-systemd, s6-init, trunk, xry111/arm64, xry111/arm64-12.0, xry111/clfs-ng, xry111/lfs-next, xry111/loongarch, xry111/loongarch-12.0, xry111/loongarch-12.1, xry111/mips64el, xry111/pip3, xry111/rust-wip-20221008, xry111/update-glibc
Children:
9a05e45
Parents:
560065f (diff), 1cd5961 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

Split Chapter 5 into three separate chapters.
Implement a new method of cross-building the LFS tool chain
and other tools to simplify the method of isolating the
new system from the original host. This will be the start of
LFS-10.0.

Move old trunk/BOOK to branches/old-trunk.

git-svn-id: http://svn.linuxfromscratch.org/LFS/trunk/BOOK@11946 4aa44e1e-78dd-0310-a6d2-fbcd4c07a689

File:
1 edited

Legend:

Unmodified
Added
Removed
  • chapter05/toolchaintechnotes.xml

    r560065f r675606b  
    1717  to at any time during the process.</para>
    1818
    19   <para>The overall goal of <xref linkend="chapter-temporary-tools"/> is to
    20   produce a temporary area that contains a known-good set of tools that can be
    21   isolated from the host system. By using <command>chroot</command>, the
    22   commands in the remaining chapters will be contained within that environment,
    23   ensuring a clean, trouble-free build of the target LFS system. The build
    24   process has been designed to minimize the risks for new readers and to provide
    25   the most educational value at the same time.</para>
    26 
    27   <note>
    28     <para>Before continuing, be aware of the name of the working platform,
    29     often referred to as the target triplet. A simple way to determine the
    30     name of the target triplet is to run the <command>config.guess</command>
    31     script that comes with the source for many packages. Unpack the Binutils
    32     sources and run the script: <userinput>./config.guess</userinput> and note
    33     the output. For example, for a 32-bit Intel processor the
    34     output will be <emphasis>i686-pc-linux-gnu</emphasis>. On a 64-bit
    35     system it will be <emphasis>x86_64-pc-linux-gnu</emphasis>.</para>
    36 
    37     <para>Also be aware of the name of the platform's dynamic linker, often
    38     referred to as the dynamic loader (not to be confused with the standard
    39     linker <command>ld</command> that is part of Binutils). The dynamic linker
    40     provided by Glibc finds and loads the shared libraries needed by a program,
    41     prepares the program to run, and then runs it. The name of the dynamic
    42     linker for a 32-bit Intel machine will be <filename
    43     class="libraryfile">ld-linux.so.2</filename> (<filename
    44     class="libraryfile">ld-linux-x86-64.so.2</filename> for 64-bit systems).  A
    45     sure-fire way to determine the name of the dynamic linker is to inspect a
    46     random binary from the host system by running: <userinput>readelf -l
    47     &lt;name of binary&gt; | grep interpreter</userinput> and noting the
    48     output. The authoritative reference covering all platforms is in the
    49     <filename>shlib-versions</filename> file in the root of the Glibc source
    50     tree.</para>
    51   </note>
    52 
    53   <para>Some key technical points of how the <xref
    54   linkend="chapter-temporary-tools"/> build method works:</para>
    55 
    56   <itemizedlist>
    57     <listitem>
    58       <para>Slightly adjusting the name of the working platform, by changing the
    59       &quot;vendor&quot; field target triplet by way of the
    60       <envar>LFS_TGT</envar> variable, ensures that the first build of Binutils
    61       and GCC produces a compatible cross-linker and cross-compiler. Instead of
    62       producing binaries for another architecture, the cross-linker and
    63       cross-compiler will produce binaries compatible with the current
    64       hardware.</para>
    65     </listitem>
    66     <listitem>
    67       <para> The temporary libraries are cross-compiled.  Because a
    68       cross-compiler by its nature cannot rely on anything from its host
    69       system, this method removes potential contamination of the target
    70       system by lessening the chance of headers or libraries from the host
    71       being incorporated into the new tools.  Cross-compilation also allows for
    72       the possibility of building both 32-bit and 64-bit libraries on 64-bit
    73       capable hardware.</para>
    74     </listitem>
    75     <listitem>
    76     <para>Careful manipulation of the GCC source tells the compiler which target
    77     dynamic linker will be used.</para>
    78     </listitem>
    79   </itemizedlist>
    80 
    81   <para>Binutils is installed first because the <command>configure</command>
    82   runs of both GCC and Glibc perform various feature tests on the assembler
    83   and linker to determine which software features to enable or disable. This
    84   is more important than one might first realize. An incorrectly configured
    85   GCC or Glibc can result in a subtly broken toolchain, where the impact of
    86   such breakage might not show up until near the end of the build of an
    87   entire distribution. A test suite failure will usually highlight this error
    88   before too much additional work is performed.</para>
    89 
    90   <para>Binutils installs its assembler and linker in two locations,
    91   <filename class="directory">/tools/bin</filename> and <filename
    92   class="directory">/tools/$LFS_TGT/bin</filename>. The tools in one
    93   location are hard linked to the other. An important facet of the linker is
    94   its library search order. Detailed information can be obtained from
    95   <command>ld</command> by passing it the <parameter>--verbose</parameter>
    96   flag. For example, an <userinput>ld --verbose | grep SEARCH</userinput>
    97   will illustrate the current search paths and their order. It shows which
    98   files are linked by <command>ld</command> by compiling a dummy program and
    99   passing the <parameter>--verbose</parameter> switch to the linker. For example,
    100   <userinput>gcc dummy.c -Wl,--verbose 2&gt;&amp;1 | grep succeeded</userinput>
    101   will show all the files successfully opened during the linking.</para>
    102 
    103   <para>The next package installed is GCC. An example of what can be
    104   seen during its run of <command>configure</command> is:</para>
    105 
    106 <screen><computeroutput>checking what assembler to use... /tools/i686-lfs-linux-gnu/bin/as
    107 checking what linker to use... /tools/i686-lfs-linux-gnu/bin/ld</computeroutput></screen>
    108 
    109   <para>This is important for the reasons mentioned above. It also demonstrates
    110   that GCC's configure script does not search the PATH directories to find which
    111   tools to use. However, during the actual operation of <command>gcc</command>
    112   itself, the same search paths are not necessarily used. To find out which
    113   standard linker <command>gcc</command> will use, run:
    114   <userinput>gcc -print-prog-name=ld</userinput>.</para>
    115 
    116   <para>Detailed information can be obtained from <command>gcc</command> by
    117   passing it the <parameter>-v</parameter> command line option while compiling
    118   a dummy program. For example, <userinput>gcc -v dummy.c</userinput> will show
    119   detailed information about the preprocessor, compilation, and assembly stages,
    120   including <command>gcc</command>'s included search paths and their order.</para>
    121 
    122   <para>Next installed are sanitized Linux API headers. These allow the standard
    123   C library (Glibc) to interface with features that the Linux kernel will
    124   provide.</para>
    125 
    126   <para>The next package installed is Glibc. The most important considerations
    127   for building Glibc are the compiler, binary tools, and kernel headers. The
    128   compiler is generally not an issue since Glibc will always use the compiler
    129   relating to the <parameter>--host</parameter> parameter passed to its
    130   configure script; e.g. in our case, the compiler will be
    131   <command>i686-lfs-linux-gnu-gcc</command>. The binary tools and kernel
    132   headers can be a bit more complicated. Therefore, take no risks and use the
    133   available configure switches to enforce the correct selections. After the run
    134   of <command>configure</command>, check the contents of the
    135   <filename>config.make</filename> file in the <filename
    136   class="directory">glibc-build</filename> directory for all important details.
    137   Note the use of <parameter>CC="i686-lfs-gnu-gcc"</parameter> to control which
    138   binary tools are used and the use of the <parameter>-nostdinc</parameter> and
    139   <parameter>-isystem</parameter> flags to control the compiler's include
    140   search path. These items highlight an important aspect of the Glibc
    141   package&mdash;it is very self-sufficient in terms of its build machinery and
    142   generally does not rely on toolchain defaults.</para>
    143 
    144   <para>During the second pass of Binutils, we are able to utilize the
    145   <parameter>--with-lib-path</parameter> configure switch to control
    146   <command>ld</command>'s library search path.</para>
    147 
    148   <para>For the second pass of GCC, its sources also need to be modified to
    149   tell GCC to use the new dynamic linker. Failure to do so will result in the
    150   GCC programs themselves having the name of the dynamic linker from the host
    151   system's <filename class="directory">/lib</filename> directory embedded into
    152   them, which would defeat the goal of getting away from the host. From this
    153   point onwards, the core toolchain is self-contained and self-hosted. The
    154   remainder of the <xref linkend="chapter-temporary-tools"/> packages all build
    155   against the new Glibc in <filename
    156   class="directory">/tools</filename>.</para>
    157 
    158   <para>Upon entering the chroot environment in <xref
    159   linkend="chapter-building-system"/>, the first major package to be
    160   installed is Glibc, due to its self-sufficient nature mentioned above.
    161   Once this Glibc is installed into <filename
    162   class="directory">/usr</filename>, we will perform a quick changeover of the
    163   toolchain defaults, and then proceed in building the rest of the target
    164   LFS system.</para>
     19  <para>The overall goal of this chapter and <xref
     20  linkend="chapter-temporary-tools"/> is to produce a temporary area that
     21  contains a known-good set of tools that can be isolated from the host system.
     22  By using <command>chroot</command>, the commands in the remaining chapters
     23  will be contained within that environment, ensuring a clean, trouble-free
     24  build of the target LFS system. The build process has been designed to
     25  minimize the risks for new readers and to provide the most educational value
     26  at the same time.</para>
     27
     28  <para>The build process is based on the process of
     29  <emphasis>cross-compilation</emphasis>. Cross-compilation is normally used
     30  for building a compiler and its toolchain for a machine different from
     31  the one that is used for the build. This is not strictly needed for LFS,
     32  since the machine where the new system will run is the same as the one
     33  used for the build. But cross-compilation has the great advantage that
     34  anything that is cross-compiled cannot depend on the host environment.</para>
     35
     36  <sect2 id="cross-compile" xreflabel="About Cross-Compilation">
     37
     38    <title>About Cross-Compilation</title>
     39
     40    <para>Cross-compilation involves some concepts that deserve a section on
     41    their own. Although this section may be omitted in a first reading, it
     42    is strongly suggested to come back to it later in order to get a full
     43    grasp of the build process.</para>
     44
     45    <para>Let us first define some terms used in this context:</para>
     46
     47    <variablelist>
     48      <varlistentry><term>build</term><listitem>
     49        <para>is the machine where we build programs. Note that this machine
     50        is referred to as the <quote>host</quote> in other
     51        sections.</para></listitem>
     52      </varlistentry>
     53
     54      <varlistentry><term>host</term><listitem>
     55        <para>is the machine/system where the built programs will run. Note
     56        that this use of <quote>host</quote> is not the same as in other
     57        sections.</para></listitem>
     58      </varlistentry>
     59
     60      <varlistentry><term>target</term><listitem>
     61        <para>is only used for compilers. It is the machine the compiler
     62        produces code for. It may be different from both build and
     63        host.</para></listitem>
     64      </varlistentry>
     65
     66    </variablelist>
     67
     68    <para>As an example, let us imagine the following scenario: we may have a
     69    compiler on a slow machine only, let's call the machine A, and the compiler
     70    ccA. We may have also a fast machine (B), but with no compiler, and we may
     71    want to produce code for a another slow machine (C). Then, to build a
     72    compiler for machine C, we would have three stages:</para>
     73
     74    <informaltable align="center">
     75      <tgroup cols="5">
     76        <colspec colnum="1" align="center"/>
     77        <colspec colnum="2" align="center"/>
     78        <colspec colnum="3" align="center"/>
     79        <colspec colnum="4" align="center"/>
     80        <colspec colnum="5" align="left"/>
     81        <thead>
     82          <row><entry>Stage</entry><entry>Build</entry><entry>Host</entry>
     83               <entry>Target</entry><entry>Action</entry></row>
     84        </thead>
     85        <tbody>
     86          <row>
     87            <entry>1</entry><entry>A</entry><entry>A</entry><entry>B</entry>
     88            <entry>build cross-compiler cc1 using ccA on machine A</entry>
     89          </row>
     90          <row>
     91            <entry>2</entry><entry>A</entry><entry>B</entry><entry>B</entry>
     92            <entry>build cross-compiler cc2 using cc1 on machine A</entry>
     93          </row>
     94          <row>
     95            <entry>3</entry><entry>B</entry><entry>C</entry><entry>C</entry>
     96            <entry>build compiler ccC using cc2 on machine B</entry>
     97          </row>
     98        </tbody>
     99      </tgroup>
     100    </informaltable>
     101
     102    <para>Then, all the other programs needed by machine C can be compiled
     103    using cc2 on the fast machine B. Note that unless B can run programs
     104    produced for C, there is no way to test the built programs until machine
     105    C itself is running. For example, for testing ccC, we may want to add a
     106    fourth stage:</para>
     107
     108    <informaltable align="center">
     109      <tgroup cols="5">
     110        <colspec colnum="1" align="center"/>
     111        <colspec colnum="2" align="center"/>
     112        <colspec colnum="3" align="center"/>
     113        <colspec colnum="4" align="center"/>
     114        <colspec colnum="5" align="left"/>
     115        <thead>
     116          <row><entry>Stage</entry><entry>Build</entry><entry>Host</entry>
     117               <entry>Target</entry><entry>Action</entry></row>
     118        </thead>
     119        <tbody>
     120          <row>
     121            <entry>4</entry><entry>C</entry><entry>C</entry><entry>C</entry>
     122            <entry>rebuild  and test ccC using itself on machine C</entry>
     123          </row>
     124        </tbody>
     125      </tgroup>
     126    </informaltable>
     127
     128    <para>In the example above, only cc1 and cc2 are cross-compilers, that is,
     129    they produce code for a machine different from the one they are run on.
     130    The other compilers ccA and ccC produce code for the machine they are run
     131    on. Such compilers are called <emphasis>native</emphasis> compilers.</para>
     132
     133  </sect2>
     134
     135  <sect2 id="lfs-cross">
     136    <title>Implementation of Cross-Compilation for LFS</title>
     137
     138    <note>
     139      <para>Almost all the build systems use names of the form
     140      cpu-vendor-kernel-os referred to as the machine triplet. An astute
     141      reader may wonder why a <quote>triplet</quote> refers to a four component
     142      name. The reason is history: initially, three component names were enough
     143      to designate unambiguously a machine, but with new machines and systems
     144      appearing, that proved insufficient. The word <quote>triplet</quote>
     145      remained. A simple way to determine your machine triplet is to run
     146      the <command>config.guess</command>
     147      script that comes with the source for many packages. Unpack the binutils
     148      sources and run the script: <userinput>./config.guess</userinput> and note
     149      the output. For example, for a 32-bit Intel processor the
     150      output will be <emphasis>i686-pc-linux-gnu</emphasis>. On a 64-bit
     151      system it will be <emphasis>x86_64-pc-linux-gnu</emphasis>.</para>
     152
     153      <para>Also be aware of the name of the platform's dynamic linker, often
     154      referred to as the dynamic loader (not to be confused with the standard
     155      linker <command>ld</command> that is part of binutils). The dynamic linker
     156      provided by Glibc finds and loads the shared libraries needed by a
     157      program, prepares the program to run, and then runs it. The name of the
     158      dynamic linker for a 32-bit Intel machine will be <filename
     159      class="libraryfile">ld-linux.so.2</filename> (<filename
     160      class="libraryfile">ld-linux-x86-64.so.2</filename> for 64-bit systems). A
     161      sure-fire way to determine the name of the dynamic linker is to inspect a
     162      random binary from the host system by running: <userinput>readelf -l
     163      &lt;name of binary&gt; | grep interpreter</userinput> and noting the
     164      output. The authoritative reference covering all platforms is in the
     165      <filename>shlib-versions</filename> file in the root of the Glibc source
     166      tree.</para>
     167    </note>
     168
     169    <para>In order to fake a cross compilation, the name of the host triplet
     170    is slightly adjusted by changing the &quot;vendor&quot; field in the
     171    <envar>LFS_TGT</envar> variable. We also use the
     172    <parameter>--with-sysroot</parameter> option when building the cross linker and
     173    cross compiler to tell them where to find the needed host files. This
     174    ensures that none of the other programs built in <xref
     175    linkend="chapter-temporary-tools"/> can link to libraries on the build
     176    machine. Only two stages are mandatory, and one more for tests:</para>
     177
     178    <informaltable align="center">
     179      <tgroup cols="5">
     180        <colspec colnum="1" align="center"/>
     181        <colspec colnum="2" align="center"/>
     182        <colspec colnum="3" align="center"/>
     183        <colspec colnum="4" align="center"/>
     184        <colspec colnum="5" align="left"/>
     185        <thead>
     186          <row><entry>Stage</entry><entry>Build</entry><entry>Host</entry>
     187               <entry>Target</entry><entry>Action</entry></row>
     188        </thead>
     189        <tbody>
     190          <row>
     191            <entry>1</entry><entry>pc</entry><entry>pc</entry><entry>lfs</entry>
     192            <entry>build cross-compiler cc1 using cc-pc on pc</entry>
     193          </row>
     194          <row>
     195            <entry>2</entry><entry>pc</entry><entry>lfs</entry><entry>lfs</entry>
     196            <entry>build compiler cc-lfs using cc1 on pc</entry>
     197          </row>
     198          <row>
     199            <entry>3</entry><entry>lfs</entry><entry>lfs</entry><entry>lfs</entry>
     200            <entry>rebuild and test cc-lfs using itself on lfs</entry>
     201          </row>
     202        </tbody>
     203      </tgroup>
     204    </informaltable>
     205
     206    <para>In the above table, <quote>on pc</quote> means the commands are run
     207    on a machine using the already installed distribution. <quote>On
     208    lfs</quote> means the commands are run in a chrooted environment.</para>
     209
     210    <para>Now, there is more about cross-compiling: the C language is not
     211    just a compiler, but also defines a standard library. In this book, the
     212    GNU C library, named glibc, is used. This library must
     213    be compiled for the lfs machine, that is, using the cross compiler cc1.
     214    But the compiler itself uses an internal library implementing complex
     215    instructions not available in the assembler instruction set. This
     216    internal library is named libgcc, and must be linked to the glibc
     217    library to be fully functional! Furthermore, the standard library for
     218    C++ (libstdc++) also needs being linked to glibc. The solution
     219    to this chicken and egg problem is to first build a degraded cc1 based libgcc,
     220    lacking some fuctionalities such as threads and exception handling, then
     221    build glibc using this degraded compiler (glibc itself is not
     222    degraded), then build libstdc++. But this last library will lack the
     223    same functionalities as libgcc.</para>
     224
     225    <para>This is not the end of the story: the conclusion of the preceding
     226    paragraph is that cc1 is unable to build a fully functional libstdc++, but
     227    this is the only compiler available for building the C/C++ libraries
     228    during stage 2! Of course, the compiler built during stage 2, cc-lfs,
     229    would be able to build those libraries, but (1) the build system of
     230    GCC does not know that it is usable on pc, and (2) using it on pc
     231    would be at risk of linking to the pc libraries, since cc-lfs is a native
     232    compiler. So we have to build libstdc++ later, in chroot.</para>
     233
     234  </sect2>
     235
     236  <sect2 id="other-details">
     237
     238    <title>Other procedural details</title>
     239
     240    <para>The cross-compiler will be installed in a separate <filename
     241    class="directory">$LFS/tools</filename> directory, since it will not
     242    be part of the final system.</para>
     243
     244    <para>Binutils is installed first because the <command>configure</command>
     245    runs of both GCC and Glibc perform various feature tests on the assembler
     246    and linker to determine which software features to enable or disable. This
     247    is more important than one might first realize. An incorrectly configured
     248    GCC or Glibc can result in a subtly broken toolchain, where the impact of
     249    such breakage might not show up until near the end of the build of an
     250    entire distribution. A test suite failure will usually highlight this error
     251    before too much additional work is performed.</para>
     252
     253    <para>Binutils installs its assembler and linker in two locations,
     254    <filename class="directory">$LFS/tools/bin</filename> and <filename
     255    class="directory">$LFS/tools/$LFS_TGT/bin</filename>. The tools in one
     256    location are hard linked to the other. An important facet of the linker is
     257    its library search order. Detailed information can be obtained from
     258    <command>ld</command> by passing it the <parameter>--verbose</parameter>
     259    flag. For example, <command>$LFS_TGT-ld --verbose | grep SEARCH</command>
     260    will illustrate the current search paths and their order. It shows which
     261    files are linked by <command>ld</command> by compiling a dummy program and
     262    passing the <parameter>--verbose</parameter> switch to the linker. For
     263    example,
     264    <command>$LFS_TGT-gcc dummy.c -Wl,--verbose 2&gt;&amp;1 | grep succeeded</command>
     265    will show all the files successfully opened during the linking.</para>
     266
     267    <para>The next package installed is GCC. An example of what can be
     268    seen during its run of <command>configure</command> is:</para>
     269
     270<screen><computeroutput>checking what assembler to use... /mnt/lfs/tools/i686-lfs-linux-gnu/bin/as
     271checking what linker to use... /mnt/lfs/tools/i686-lfs-linux-gnu/bin/ld</computeroutput></screen>
     272
     273    <para>This is important for the reasons mentioned above. It also
     274    demonstrates that GCC's configure script does not search the PATH
     275    directories to find which tools to use. However, during the actual
     276    operation of <command>gcc</command> itself, the same search paths are not
     277    necessarily used. To find out which standard linker <command>gcc</command>
     278    will use, run: <command>$LFS_TGT-gcc -print-prog-name=ld</command>.</para>
     279
     280    <para>Detailed information can be obtained from <command>gcc</command> by
     281    passing it the <parameter>-v</parameter> command line option while compiling
     282    a dummy program. For example, <command>gcc -v dummy.c</command> will show
     283    detailed information about the preprocessor, compilation, and assembly
     284    stages, including <command>gcc</command>'s included search paths and their
     285    order.</para>
     286
     287    <para>Next installed are sanitized Linux API headers. These allow the
     288    standard C library (Glibc) to interface with features that the Linux
     289    kernel will provide.</para>
     290
     291    <para>The next package installed is Glibc. The most important
     292    considerations for building Glibc are the compiler, binary tools, and
     293    kernel headers. The compiler is generally not an issue since Glibc will
     294    always use the compiler relating to the <parameter>--host</parameter>
     295    parameter passed to its configure script; e.g. in our case, the compiler
     296    will be <command>$LFS_TGT-gcc</command>. The binary tools and kernel
     297    headers can be a bit more complicated. Therefore, take no risks and use
     298    the available configure switches to enforce the correct selections. After
     299    the run of <command>configure</command>, check the contents of the
     300    <filename>config.make</filename> file in the <filename
     301    class="directory">build</filename> directory for all important details.
     302    Note the use of <parameter>CC="$LFS_TGT-gcc"</parameter> (with
     303    <envar>$LFS_TGT</envar> expanded) to control which binary tools are used
     304    and the use of the <parameter>-nostdinc</parameter> and
     305    <parameter>-isystem</parameter> flags to control the compiler's include
     306    search path. These items highlight an important aspect of the Glibc
     307    package&mdash;it is very self-sufficient in terms of its build machinery
     308    and generally does not rely on toolchain defaults.</para>
     309
     310    <para>As said above, the standard C++ library is compiled next, followed in
     311    Chapter 6 by all the programs that need themselves to be built. The install
     312    step of libstdc++ uses the <envar>DESTDIR</envar> variable to have the
     313    programs land into the LFS filesystem.</para>
     314
     315    <para>In Chapter 7 the native lfs compiler is built. First binutils-pass2,
     316    with the same <envar>DESTDIR</envar> install as the other programs is
     317    built, and then the second pass of GCC is constructed, omitting libstdc++
     318    and other non-important libraries.  Due to some weird logic in GCC's
     319    configure script, <envar>CC_FOR_TARGET</envar> ends up as
     320    <command>cc</command> when the host is the same as the target, but is
     321    different from the build system. This is why
     322    <parameter>CC_FOR_TARGET=$LFS_TGT-gcc</parameter> is put explicitely into
     323    the configure options.</para>
     324
     325    <para>Upon entering the chroot environment in <xref
     326    linkend="chapter-chroot-temporary-tools"/>, the first task is to install
     327    libstdc++. Then temporary installations of programs needed for the proper
     328    operation of the toolchain are performed. Programs needed for testing
     329    other programs are also built. From this point onwards, the
     330    core toolchain is self-contained and self-hosted.  In
     331    <xref linkend="chapter-building-system"/>, final versions of all the
     332    packages needed for a fully functional system are built, tested and
     333    installed.</para>
     334
     335  </sect2>
    165336
    166337</sect1>
Note: See TracChangeset for help on using the changeset viewer.