Ignore:
Timestamp:
05/03/2020 09:02:51 PM (4 years ago)
Author:
Pierre Labastie <pieere@…>
Branches:
10.0, 10.0-rc1, 10.1, 10.1-rc1, 11.0, 11.0-rc1, 11.0-rc2, 11.0-rc3, 11.1, 11.1-rc1, 11.2, 11.2-rc1, 11.3, 11.3-rc1, 12.0, 12.0-rc1, 12.1, 12.1-rc1, arm, bdubbs/gcc13, ml-11.0, multilib, renodr/libudev-from-systemd, s6-init, trunk, xry111/arm64, xry111/arm64-12.0, xry111/clfs-ng, xry111/lfs-next, xry111/loongarch, xry111/loongarch-12.0, xry111/loongarch-12.1, xry111/mips64el, xry111/pip3, xry111/rust-wip-20221008, xry111/update-glibc
Children:
a715dec
Parents:
9d719e2
Message:

Make the new book

git-svn-id: http://svn.linuxfromscratch.org/LFS/branches/cross-chap5@11831 4aa44e1e-78dd-0310-a6d2-fbcd4c07a689

File:
1 edited

Legend:

Unmodified
Added
Removed
  • chapter05/toolchaintechnotes.xml

    r9d719e2 refcb393  
    2525  the most educational value at the same time.</para>
    2626
    27   <note>
    28     <para>Before continuing, be aware of the name of the working platform,
    29     often referred to as the target triplet. A simple way to determine the
    30     name of the target triplet is to run the <command>config.guess</command>
    31     script that comes with the source for many packages. Unpack the Binutils
    32     sources and run the script: <userinput>./config.guess</userinput> and note
    33     the output. For example, for a 32-bit Intel processor the
    34     output will be <emphasis>i686-pc-linux-gnu</emphasis>. On a 64-bit
    35     system it will be <emphasis>x86_64-pc-linux-gnu</emphasis>.</para>
    36 
    37     <para>Also be aware of the name of the platform's dynamic linker, often
    38     referred to as the dynamic loader (not to be confused with the standard
    39     linker <command>ld</command> that is part of Binutils). The dynamic linker
    40     provided by Glibc finds and loads the shared libraries needed by a program,
    41     prepares the program to run, and then runs it. The name of the dynamic
    42     linker for a 32-bit Intel machine will be <filename
    43     class="libraryfile">ld-linux.so.2</filename> (<filename
    44     class="libraryfile">ld-linux-x86-64.so.2</filename> for 64-bit systems).  A
    45     sure-fire way to determine the name of the dynamic linker is to inspect a
    46     random binary from the host system by running: <userinput>readelf -l
    47     &lt;name of binary&gt; | grep interpreter</userinput> and noting the
    48     output. The authoritative reference covering all platforms is in the
    49     <filename>shlib-versions</filename> file in the root of the Glibc source
    50     tree.</para>
    51   </note>
    52 
    53   <para>Some key technical points of how the <xref
    54   linkend="chapter-temporary-tools"/> build method works:</para>
    55 
    56   <itemizedlist>
    57     <listitem>
    58       <para>Slightly adjusting the name of the working platform, by changing the
    59       &quot;vendor&quot; field target triplet by way of the
    60       <envar>LFS_TGT</envar> variable, ensures that the first build of Binutils
    61       and GCC produces a compatible cross-linker and cross-compiler. Instead of
    62       producing binaries for another architecture, the cross-linker and
    63       cross-compiler will produce binaries compatible with the current
    64       hardware.</para>
    65     </listitem>
    66     <listitem>
    67       <para> The temporary libraries are cross-compiled.  Because a
    68       cross-compiler by its nature cannot rely on anything from its host
    69       system, this method removes potential contamination of the target
    70       system by lessening the chance of headers or libraries from the host
    71       being incorporated into the new tools.  Cross-compilation also allows for
    72       the possibility of building both 32-bit and 64-bit libraries on 64-bit
    73       capable hardware.</para>
    74     </listitem>
    75     <listitem>
    76     <para>Careful manipulation of the GCC source tells the compiler which target
    77     dynamic linker will be used.</para>
    78     </listitem>
    79   </itemizedlist>
    80 
    81   <para>Binutils is installed first because the <command>configure</command>
    82   runs of both GCC and Glibc perform various feature tests on the assembler
    83   and linker to determine which software features to enable or disable. This
    84   is more important than one might first realize. An incorrectly configured
    85   GCC or Glibc can result in a subtly broken toolchain, where the impact of
    86   such breakage might not show up until near the end of the build of an
    87   entire distribution. A test suite failure will usually highlight this error
    88   before too much additional work is performed.</para>
    89 
    90   <para>Binutils installs its assembler and linker in two locations,
    91   <filename class="directory">/tools/bin</filename> and <filename
    92   class="directory">/tools/$LFS_TGT/bin</filename>. The tools in one
    93   location are hard linked to the other. An important facet of the linker is
    94   its library search order. Detailed information can be obtained from
    95   <command>ld</command> by passing it the <parameter>--verbose</parameter>
    96   flag. For example, an <userinput>ld --verbose | grep SEARCH</userinput>
    97   will illustrate the current search paths and their order. It shows which
    98   files are linked by <command>ld</command> by compiling a dummy program and
    99   passing the <parameter>--verbose</parameter> switch to the linker. For example,
    100   <userinput>gcc dummy.c -Wl,--verbose 2&gt;&amp;1 | grep succeeded</userinput>
    101   will show all the files successfully opened during the linking.</para>
    102 
    103   <para>The next package installed is GCC. An example of what can be
    104   seen during its run of <command>configure</command> is:</para>
    105 
    106 <screen><computeroutput>checking what assembler to use... /tools/i686-lfs-linux-gnu/bin/as
    107 checking what linker to use... /tools/i686-lfs-linux-gnu/bin/ld</computeroutput></screen>
    108 
    109   <para>This is important for the reasons mentioned above. It also demonstrates
    110   that GCC's configure script does not search the PATH directories to find which
    111   tools to use. However, during the actual operation of <command>gcc</command>
    112   itself, the same search paths are not necessarily used. To find out which
    113   standard linker <command>gcc</command> will use, run:
    114   <userinput>gcc -print-prog-name=ld</userinput>.</para>
    115 
    116   <para>Detailed information can be obtained from <command>gcc</command> by
    117   passing it the <parameter>-v</parameter> command line option while compiling
    118   a dummy program. For example, <userinput>gcc -v dummy.c</userinput> will show
    119   detailed information about the preprocessor, compilation, and assembly stages,
    120   including <command>gcc</command>'s included search paths and their order.</para>
    121 
    122   <para>Next installed are sanitized Linux API headers. These allow the standard
    123   C library (Glibc) to interface with features that the Linux kernel will
    124   provide.</para>
    125 
    126   <para>The next package installed is Glibc. The most important considerations
    127   for building Glibc are the compiler, binary tools, and kernel headers. The
    128   compiler is generally not an issue since Glibc will always use the compiler
    129   relating to the <parameter>--host</parameter> parameter passed to its
    130   configure script; e.g. in our case, the compiler will be
    131   <command>i686-lfs-linux-gnu-gcc</command>. The binary tools and kernel
    132   headers can be a bit more complicated. Therefore, take no risks and use the
    133   available configure switches to enforce the correct selections. After the run
    134   of <command>configure</command>, check the contents of the
    135   <filename>config.make</filename> file in the <filename
    136   class="directory">glibc-build</filename> directory for all important details.
    137   Note the use of <parameter>CC="i686-lfs-gnu-gcc"</parameter> to control which
    138   binary tools are used and the use of the <parameter>-nostdinc</parameter> and
    139   <parameter>-isystem</parameter> flags to control the compiler's include
    140   search path. These items highlight an important aspect of the Glibc
    141   package&mdash;it is very self-sufficient in terms of its build machinery and
    142   generally does not rely on toolchain defaults.</para>
    143 
    144   <para>During the second pass of Binutils, we are able to utilize the
    145   <parameter>--with-lib-path</parameter> configure switch to control
    146   <command>ld</command>'s library search path.</para>
    147 
    148   <para>For the second pass of GCC, its sources also need to be modified to
    149   tell GCC to use the new dynamic linker. Failure to do so will result in the
    150   GCC programs themselves having the name of the dynamic linker from the host
    151   system's <filename class="directory">/lib</filename> directory embedded into
    152   them, which would defeat the goal of getting away from the host. From this
    153   point onwards, the core toolchain is self-contained and self-hosted. The
    154   remainder of the <xref linkend="chapter-temporary-tools"/> packages all build
    155   against the new Glibc in <filename
    156   class="directory">/tools</filename>.</para>
    157 
    158   <para>Upon entering the chroot environment in <xref
    159   linkend="chapter-building-system"/>, the first major package to be
    160   installed is Glibc, due to its self-sufficient nature mentioned above.
    161   Once this Glibc is installed into <filename
    162   class="directory">/usr</filename>, we will perform a quick changeover of the
    163   toolchain defaults, and then proceed in building the rest of the target
    164   LFS system.</para>
     27  <para>The build process is based on the process of
     28  <emphasis>cross-compilation</emphasis>. Cross-compilation is normally used
     29  for building a compiler and its toolchain for a machine different from
     30  the one that is used for the build. This is not strictly needed for LFS,
     31  since the machine where the new system will run is the same as the one
     32  used for the build. But cross-compilation has the great advantage that
     33  anything that is cross-compiled cannot depend on the host environment.</para>
     34
     35  <sect2 id="cross-compile" xreflabel="About Cross-Compilation">
     36
     37    <title>About Cross-Compilation</title>
     38
     39    <para>Cross-compilation involves some concepts that deserve a section on
     40    their own. Although this section may be omitted in a first reading, it
     41    is strongly suggested to come back to it later in order to get a full
     42    grasp of the build process.</para>
     43
     44    <para>Let us first define some terms used in this context:</para>
     45
     46    <variablelist>
     47      <varlistentry><term>build</term><listitem>
     48        <para>is the machine where we build programs. Note that this machine
     49        is referred to as the <quote>host</quote> in other
     50        sections.</para></listitem>
     51      </varlistentry>
     52
     53      <varlistentry><term>host</term><listitem>
     54        <para>is the machine/system where the built programs will run. Note
     55        that this use of <quote>host</quote> is not the same as in other
     56        sections.</para></listitem>
     57      </varlistentry>
     58
     59      <varlistentry><term>target</term><listitem>
     60        <para>is only used for compilers. It is the machine the compiler
     61        produces code for. It may be different from both build and
     62        host.</para></listitem>
     63      </varlistentry>
     64
     65    </variablelist>
     66
     67    <para>As an example, let us imagine the following scenario: we may have a
     68    compiler on a slow machine only, let's call the machine A, and the compiler
     69    ccA. We may have also a fast machine (B), but with no compiler, and we may
     70    want to produce code for a another slow machine (C). Then, to build a
     71    compiler for machine C, we would have three stages:</para>
     72
     73    <informaltable align="center">
     74      <tgroup cols="5">
     75        <colspec colnum="1" align="center"/>
     76        <colspec colnum="2" align="center"/>
     77        <colspec colnum="3" align="center"/>
     78        <colspec colnum="4" align="center"/>
     79        <colspec colnum="5" align="left"/>
     80        <thead>
     81          <row><entry>Stage</entry><entry>Build</entry><entry>Host</entry>
     82               <entry>Target</entry><entry>Action</entry></row>
     83        </thead>
     84        <tbody>
     85          <row>
     86            <entry>1</entry><entry>A</entry><entry>A</entry><entry>B</entry>
     87            <entry>build cross-compiler cc1 using ccA on machine A</entry>
     88          </row>
     89          <row>
     90            <entry>2</entry><entry>A</entry><entry>B</entry><entry>B</entry>
     91            <entry>build cross-compiler cc2 using cc1 on machine A</entry>
     92          </row>
     93          <row>
     94            <entry>3</entry><entry>B</entry><entry>C</entry><entry>C</entry>
     95            <entry>build compiler ccC using cc2 on machine B</entry>
     96          </row>
     97        </tbody>
     98      </tgroup>
     99    </informaltable>
     100
     101    <para>Then, all the other programs needed by machine C can be compiled
     102    using cc2 on the fast machine B. Note that unless B can run programs
     103    produced for C, there is no way to test the built programs until machine
     104    C itself is running. For example, for testing ccC, we may want to add a
     105    fourth stage:</para>
     106
     107    <informaltable align="center">
     108      <tgroup cols="5">
     109        <colspec colnum="1" align="center"/>
     110        <colspec colnum="2" align="center"/>
     111        <colspec colnum="3" align="center"/>
     112        <colspec colnum="4" align="center"/>
     113        <colspec colnum="5" align="left"/>
     114        <thead>
     115          <row><entry>Stage</entry><entry>Build</entry><entry>Host</entry>
     116               <entry>Target</entry><entry>Action</entry></row>
     117        </thead>
     118        <tbody>
     119          <row>
     120            <entry>4</entry><entry>C</entry><entry>C</entry><entry>C</entry>
     121            <entry>rebuild  and test ccC using itself on machine C</entry>
     122          </row>
     123        </tbody>
     124      </tgroup>
     125    </informaltable>
     126
     127    <para>In the example above, only cc1 and cc2 are cross-compilers, that is,
     128    they produce code for a machine different from the one they are run on.
     129    The other compilers ccA and ccC produce code for the machine they are run
     130    on. Such compilers are called <emphasis>native</emphasis> compilers.</para>
     131
     132  </sect2>
     133
     134  <sect2 id="lfs-cross">
     135    <title>Implementation of Cross-Compilation for LFS</title>
     136
     137    <note>
     138      <para>Almost all the build systems use names of the form
     139      cpu-vendor-kernel-os referred to as the machine triplet. An astute
     140      reader may wonder why a <quote>triplet</quote> refers to a four component
     141      name. The reason is history: initially, three component names were enough
     142      to designate unambiguously a machine, but with new machines and systems
     143      appearing, that proved insufficient. The word <quote>triplet</quote>
     144      remained. A simple way to determine your machine triplet is to run
     145      the <command>config.guess</command>
     146      script that comes with the source for many packages. Unpack the Binutils
     147      sources and run the script: <userinput>./config.guess</userinput> and note
     148      the output. For example, for a 32-bit Intel processor the
     149      output will be <emphasis>i686-pc-linux-gnu</emphasis>. On a 64-bit
     150      system it will be <emphasis>x86_64-pc-linux-gnu</emphasis>.</para>
     151
     152      <para>Also be aware of the name of the platform's dynamic linker, often
     153      referred to as the dynamic loader (not to be confused with the standard
     154      linker <command>ld</command> that is part of Binutils). The dynamic linker
     155      provided by Glibc finds and loads the shared libraries needed by a
     156      program, prepares the program to run, and then runs it. The name of the
     157      dynamic linker for a 32-bit Intel machine will be <filename
     158      class="libraryfile">ld-linux.so.2</filename> (<filename
     159      class="libraryfile">ld-linux-x86-64.so.2</filename> for 64-bit systems). A
     160      sure-fire way to determine the name of the dynamic linker is to inspect a
     161      random binary from the host system by running: <userinput>readelf -l
     162      &lt;name of binary&gt; | grep interpreter</userinput> and noting the
     163      output. The authoritative reference covering all platforms is in the
     164      <filename>shlib-versions</filename> file in the root of the Glibc source
     165      tree.</para>
     166    </note>
     167
     168    <para>In order to fake a cross compilation, the name of the host triplet
     169    is slightly adjusted by changing the &quot;vendor&quot; field in the
     170    <envar>LFS_TGT</envar> variable. We also use the
     171    <parameter>--with-sysroot</parameter> when building the cross linker and
     172    cross compiler, to tell them where to find the needed host files. This
     173    ensures none of the other programs built in <xref
     174    linkend="chapter-temporary-tools"/> can link to libraries on the build
     175    machine. Only two stages are mandatory, and one more for tests:</para>
     176
     177    <informaltable align="center">
     178      <tgroup cols="5">
     179        <colspec colnum="1" align="center"/>
     180        <colspec colnum="2" align="center"/>
     181        <colspec colnum="3" align="center"/>
     182        <colspec colnum="4" align="center"/>
     183        <colspec colnum="5" align="left"/>
     184        <thead>
     185          <row><entry>Stage</entry><entry>Build</entry><entry>Host</entry>
     186               <entry>Target</entry><entry>Action</entry></row>
     187        </thead>
     188        <tbody>
     189          <row>
     190            <entry>1</entry><entry>pc</entry><entry>pc</entry><entry>lfs</entry>
     191            <entry>build cross-compiler cc1 using cc-pc on pc</entry>
     192          </row>
     193          <row>
     194            <entry>2</entry><entry>pc</entry><entry>lfs</entry><entry>lfs</entry>
     195            <entry>build compiler cc-lfs using cc1 on pc</entry>
     196          </row>
     197          <row>
     198            <entry>3</entry><entry>lfs</entry><entry>lfs</entry><entry>lfs</entry>
     199            <entry>rebuild and test cc-lfs using itself on lfs</entry>
     200          </row>
     201        </tbody>
     202      </tgroup>
     203    </informaltable>
     204
     205    <para>In the above table, <quote>on pc</quote> means the commands are run
     206    on a machine using the already installed distribution. <quote>On
     207    lfs</quote> means the commands are run in a chrooted environment.</para>
     208
     209    <para>Now, there is more about cross-compiling: the C language is not
     210    just a compiler, but also defines a standard library. In this book, the
     211    GNU C library, named glibc, is used. This library must
     212    be compiled for the lfs machine, that is, using the cross compiler cc1.
     213    But the compiler itself uses an internal library implementing complex
     214    instructions not available in the assembler instruction set. This
     215    internal library is named libgcc, and must be linked to the glibc
     216    library to be fully functional! Furthermore, the standard library for
     217    C++ (libstdc++) also needs being linked to glibc. The solution
     218    to this chicken and egg problem is to first build a degraded cc1+libgcc,
     219    lacking some fuctionalities such as threads and exception handling, then
     220    build glibc using this degraded compiler (glibc itself is not
     221    degraded), then build libstdc++. But this last library will lack the
     222    same functionalities as libgcc.</para>
     223
     224    <para>This is not the end of the story: the conclusion of the preceding
     225    paragraph is that cc1 is unable to build a fully functional libstdc++, but
     226    this is the only compiler available for building the C/C++ libraries
     227    during stage 2! Of course, the compiler built during stage 2, cc-lfs,
     228    would be able to build those libraries, but (i) the build system of
     229    gcc does not know that it is usable on pc, and (ii) using it on pc
     230    would be at risk of linking to the pc libraries, since cc-lfs is a native
     231    compiler. So we have to build libstdc++ later, in chroot.</para>
     232
     233  </sect2>
     234
     235  <sect2 id="other-details">
     236
     237    <title>Other procedural details</title>
     238
     239    <para>The cross-compiler will be installed in a separate <filename
     240    class="directory">$LFS/tools</filename> directory, since it will not
     241    be part of the final system.</para>
     242
     243    <para>Binutils is installed first because the <command>configure</command>
     244    runs of both GCC and Glibc perform various feature tests on the assembler
     245    and linker to determine which software features to enable or disable. This
     246    is more important than one might first realize. An incorrectly configured
     247    GCC or Glibc can result in a subtly broken toolchain, where the impact of
     248    such breakage might not show up until near the end of the build of an
     249    entire distribution. A test suite failure will usually highlight this error
     250    before too much additional work is performed.</para>
     251
     252    <para>Binutils installs its assembler and linker in two locations,
     253    <filename class="directory">$LFS/tools/bin</filename> and <filename
     254    class="directory">$LFS/tools/$LFS_TGT/bin</filename>. The tools in one
     255    location are hard linked to the other. An important facet of the linker is
     256    its library search order. Detailed information can be obtained from
     257    <command>ld</command> by passing it the <parameter>--verbose</parameter>
     258    flag. For example, <command>$LFS_TGT-ld --verbose | grep SEARCH</command>
     259    will illustrate the current search paths and their order. It shows which
     260    files are linked by <command>ld</command> by compiling a dummy program and
     261    passing the <parameter>--verbose</parameter> switch to the linker. For
     262    example,
     263    <command>$LFS_TGT-gcc dummy.c -Wl,--verbose 2&gt;&amp;1 | grep succeeded</command>
     264    will show all the files successfully opened during the linking.</para>
     265
     266    <para>The next package installed is GCC. An example of what can be
     267    seen during its run of <command>configure</command> is:</para>
     268
     269<screen><computeroutput>checking what assembler to use... /mnt/lfs/tools/i686-lfs-linux-gnu/bin/as
     270checking what linker to use... /mnt/lfs/tools/i686-lfs-linux-gnu/bin/ld</computeroutput></screen>
     271
     272    <para>This is important for the reasons mentioned above. It also
     273    demonstrates that GCC's configure script does not search the PATH
     274    directories to find which tools to use. However, during the actual
     275    operation of <command>gcc</command> itself, the same search paths are not
     276    necessarily used. To find out which standard linker <command>gcc</command>
     277    will use, run: <command>$LFS_TGT-gcc -print-prog-name=ld</command>.</para>
     278
     279    <para>Detailed information can be obtained from <command>gcc</command> by
     280    passing it the <parameter>-v</parameter> command line option while compiling
     281    a dummy program. For example, <command>gcc -v dummy.c</command> will show
     282    detailed information about the preprocessor, compilation, and assembly
     283    stages, including <command>gcc</command>'s included search paths and their
     284    order.</para>
     285
     286    <para>Next installed are sanitized Linux API headers. These allow the
     287    standard C library (Glibc) to interface with features that the Linux
     288    kernel will provide.</para>
     289
     290    <para>The next package installed is Glibc. The most important
     291    considerations for building Glibc are the compiler, binary tools, and
     292    kernel headers. The compiler is generally not an issue since Glibc will
     293    always use the compiler relating to the <parameter>--host</parameter>
     294    parameter passed to its configure script; e.g. in our case, the compiler
     295    will be <command>$LFS_TGT-gcc</command>. The binary tools and kernel
     296    headers can be a bit more complicated. Therefore, take no risks and use
     297    the available configure switches to enforce the correct selections. After
     298    the run of <command>configure</command>, check the contents of the
     299    <filename>config.make</filename> file in the <filename
     300    class="directory">build</filename> directory for all important details.
     301    Note the use of <parameter>CC="$LFS_TGT-gcc"</parameter> (with
     302    <envar>$LFS_TGT</envar> expanded) to control which binary tools are used
     303    and the use of the <parameter>-nostdinc</parameter> and
     304    <parameter>-isystem</parameter> flags to control the compiler's include
     305    search path. These items highlight an important aspect of the Glibc
     306    package&mdash;it is very self-sufficient in terms of its build machinery
     307    and generally does not rely on toolchain defaults.</para>
     308
     309    <para>As said above, the standard C++ library is compiled next, followed
     310    by all the programs that need themselves to be built. The install step
     311    uses the <envar>DESTDIR</envar> variable to have the programs land into
     312    the LFS filesystem.</para>
     313
     314    <para>Then the native lfs compiler is built. First Binutils Pass 2, with
     315    the same <envar>DESTDIR</envar> install as the other programs, then the
     316    second pass of GCC, omitting libstdc++ and other non-important libraries.
     317    Due to some weird logic in GCC's configure script,
     318    <envar>CC_FOR_TARGET</envar> ends up as <command>cc</command> when host
     319    is the same as target, but is different from build. This is why
     320    <parameter>CC_FOR_TARGET=$LFS_TGT-gcc</parameter> is put explicitely into
     321    the configure options.</para>
     322
     323    <para>Upon entering the chroot environment in <xref
     324    linkend="chapter-building-system"/>, the first task is to install
     325    libstdc++. Then temporary installations of programs needed for the proper
     326    operation of the toolchain are performed. Programs needed for testing
     327    other programs are also built. From this point onwards, the
     328    core toolchain is self-contained and self-hosted.  In the remainder of
     329    the <xref linkend="chapter-building-system"/>, final versions of all the
     330    packages needed for a fully functional system are built, tested and
     331    installed.</para>
     332
     333  </sect2>
    165334
    166335</sect1>
Note: See TracChangeset for help on using the changeset viewer.